Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;5(1):112-5.
doi: 10.1038/4801.

Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor

Affiliations

Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor

J Q Fan et al. Nat Med. 1999 Jan.

Abstract

Fabry disease is a disorder of glycosphingolipid metabolism caused by deficiency of lysosomal alpha-galactosidase A (alpha-Gal A), resulting in renal failure along with premature myocardial infarction and strokes. No effective treatment of this disorder is available at present. Studies of residual activities of mutant enzymes in many Fabry patients showed that some of them had kinetic properties similar to those for normal alpha-Gal A, but were significantly less stable, especially in conditions of neutral pH (refs. 3-5). The biosynthetic processing was delayed in cultured fibroblasts of a Fabry patient, and the mutant protein formed an aggregate in endoplasmic reticulum, indicating that the enzyme deficiency in some mutants was mainly caused by abortive exit from the endoplasmic reticulum, leading to excessive degradation of the enzyme. We report here that 1-deoxy-galactonojirimycin (DGJ), a potent competitive inhibitor of alpha-Gal A, effectively enhanced alpha-Gal A activity in Fabry lymphoblasts, when administrated at concentrations lower than that usually required for intracellular inhibition of the enzyme. DGJ seemed to accelerate transport and maturation of the mutant enzyme. Oral administration of DGJ to transgenic mice overexpressing a mutant alpha-Gal A substantially elevated the enzyme activity in some organs. We propose a new molecular therapeutic strategy for genetic metabolic diseases of administering competitive inhibitors as 'chemical chaperons' at sub-inhibitory intracellular concentrations.

PubMed Disclaimer

Publication types

LinkOut - more resources