Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;112(1):67-71.
doi: 10.1046/j.1523-1747.1999.00463.x.

Pemphigus vulgaris-IgG causes a rapid depletion of desmoglein 3 (Dsg3) from the Triton X-100 soluble pools, leading to the formation of Dsg3-depleted desmosomes in a human squamous carcinoma cell line, DJM-1 cells

Affiliations
Free article

Pemphigus vulgaris-IgG causes a rapid depletion of desmoglein 3 (Dsg3) from the Triton X-100 soluble pools, leading to the formation of Dsg3-depleted desmosomes in a human squamous carcinoma cell line, DJM-1 cells

Y Aoyama et al. J Invest Dermatol. 1999 Jan.
Free article

Abstract

In this study, we examined desmoglein (Dsg) 3 and other desmosomal molecules after pemphigus vulgaris (PV)-immunoglobulin G (IgG) binding to the Dsg3 on the cell surface in DJM-1 cells, a human squamous cell carcinoma cell line. After cells were incubated with PV-IgG for various time periods (0, 5, 10, 20, 30, 60 min, or 30 h), cells were fractionated into phosphate-buffered saline soluble (cytosol), phosphate-buffered saline insoluble-Triton X-100 soluble (membrane), and Triton X-100 insoluble (cytoskeleton) fractions, and subjected to immunoblotting and immunofluorescence microscopy using antibodies against Dsgl, Dsg3, plakoglobin, desmoplakin 1, and cytokeratins. Immunoblot analysis with PV-IgG revealed that Dsg3 was already dramatically depleted from the membrane fraction 20 min after PV-IgG treatment, whereas no reduction of Dsg3 was detected in the cytoskeleton fraction as examined by immunoblotting. A 30 h incubation with PV-IgG, however, caused a marked disappearance of Dsg3, but not other desmosomal molecules, from cytoskeleton fractions. Furthermore, double-staining immunofluorescence microscopy revealed that Dsg3 was depleted from the desmosomes whereas Dsg1, desmoplakin 1, plakoglobin, and keratin filaments were bound to desmosomes. These results provide a novel interpretation for a better understanding of mechanisms for blistering in PV; i.e., a possibility that PV-IgG generates the formation of aberrant desmosomes, which are lacking in Dsg3, but not other desmosomal constituents.

PubMed Disclaimer

Publication types