Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;276(1):L9-L19.
doi: 10.1152/ajplung.1999.276.1.L9.

Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells

Affiliations

Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells

T J Kalogeris et al. Am J Physiol. 1999 Jan.

Abstract

We compared U-937 cell adhesion and adhesion molecule expression in human umbilical venous (HUVECs) and arterial (HUAECs) endothelial cells exposed to tumor necrosis factor (TNF), interleukin-1, and lipopolysaccharide (LPS). TNF and LPS stimulated vascular cell adhesion molecule (VCAM)-1 surface expression and adhesion of U-937 monocyte-like cells to HUVECs but not to HUAECs. Antibody studies demonstrated that in HUVECs at least 75% of the adhesion response is VCAM-1 mediated. Interleukin-1 stimulated U-937 cell adhesion to and VCAM-1 surface expression in both HUVECs and HUAECs. Pyrrolidinedithiocarbamate and the proteasome inhibitor MG-132 blocked TNF- and LPS-stimulated U-937 cell adhesion to HUVECs. These agents also significantly decreased TNF- and LPS-stimulated increases in HUVEC surface VCAM-1. TNF increased VCAM-1 protein and mRNA in HUVECs that was blocked by pyrrolidinedithiocarbamate. However, neither TNF or LPS stimulated VCAM-1 expression in HUAECs. TNF stimulated expression of both intercellular adhesion molecule-1 and E-selectin in HUVECs, but in HUAECs, only intercellular adhesion molecule-1 was increased. Electrophoretic mobility shift assays demonstrated no difference in the pattern of TNF-stimulated nuclear factor-kappaB activation between HUVECs and HUAECs. These studies demonstrate a novel and striking insensitivity of arterial endothelium to the effects of TNF and LPS and indicate a dissociation between the ability of HUAECs to upregulate nuclear factor-kappaB and VCAM-1.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources