Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan 1;266(1):77-84.
doi: 10.1006/abio.1998.2906.

Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives

Affiliations

Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives

M A Adams et al. Anal Biochem. .

Abstract

A capillary gas chromatographic (GC) method for the simultaneous determination of organic acids, sugars, and sugar alcohols extracted from plant tissues is described. Plant leaves were extracted in 5% (w/v) perchloric acid and neutralized extracts were purified using C18 cartridges. Organic acids, sugars, and sugar alcohols in purified extracts were converted to their trimethylsilyl (TMS)/TMS-oxime derivatives prior to separation and detection by capillary GC with flame ionization detection (FID). Derivatization procedures were investigated in detail and the compounds of interest were readily converted to their TMS/TMS-oxime derivatives using hexamethyldisiazane reagent in acetonitrile solvent (1:6 v/v) at 100 degreesC for 60 min. The derivatives were sufficiently volatile and stable. The FID response to derivatized compounds was generally linear in the concentration range 30-300 microg ml-1, with detection limits in the order of 3-76 ng. The proposed method was demonstrated for the determination of organic acids, sugars, and sugar alcohols in leaf extracts of two native Australian plants.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources