Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;8(1):123-8.
doi: 10.1093/hmg/8.1.123.

Trinucleotide expansion mutations in the cartilage oligomeric matrix protein (COMP) gene

Affiliations

Trinucleotide expansion mutations in the cartilage oligomeric matrix protein (COMP) gene

E Délot et al. Hum Mol Genet. 1999 Jan.

Abstract

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are two human autosomal dominant skeletal dysplasias characterized by variable short stature, joint laxity and early-onset degenerative joint disease. Both disorders can result from mut-ations in the gene for cartilage oligomeric matrix protein (COMP), an extracellular matrix glycoprotein. About one-third of PSACH cases result from heterozygosity for deletion of one codon within a very short triplet repeat, (GAC)5, which encodes five consecutive aspartic acid residues within the calmodulin-like region of the COMP protein. We have identified two expansion mut-ations in this repeat: an MED patient carrying a (GAC)6allele and a PSACH patient carrying a (GAC)7allele. These are among the shortest disease-causing triplet repeat expansion mutations described thus far, and are the first identified in a GAC repeat. A unique feature of this sequence is that expansion as well as shortening of the repeat can cause the same disease. In cartilage, both patients have rough endoplasmic reticulum inclusions in chondrocytes. The inclusions are also present in tendon tissue and can be reproduced in cultured tendon cells, suggesting that the pathophysiology of disease is similar in both cartilage and tendon.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources