Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Feb;49(2):86-98.
doi: 10.1007/s002510050467.

Evolution of a new nonclassical MHC class I locus in two Old World primate species

Affiliations
Comparative Study

Evolution of a new nonclassical MHC class I locus in two Old World primate species

J E Boyson et al. Immunogenetics. 1999 Feb.

Abstract

HLA-G is a nonclassical major histocompatibility complex (MHC) class I molecule that is expressed only in the human placenta, suggesting that it plays an important role at the fetal-maternal interface. In rhesus monkeys, which have similar placentation to humans, the HLA-G orthologue is a pseudogene. However, rhesus monkeys express a novel placental MHC class I molecule, Mamu-AG, which has HLA-G-like characteristics. Phylogenetic analysis of AG alleles in two Old World primate species, the baboon and the rhesus macaque, revealed limited diversity characteristic of a nonclassical MHC class I locus. Gene trees constructed using classical and nonclassical primate MHC class I alleles demonstrated that the AG locus was most closely related to the classical A locus. Interestingly, gene tree analyses suggested that the AG alleles were most closely related to a subset of A alleles which are the products of an ancestral interlocus recombination event between the A and B loci. Calculation of the rates of synonymous and nonsynonymous substitution at the AG locus revealed that positive selection was not acting on the codons encoding the peptide binding region. In exon 4, however, the rate of nonsynonymous substitution was significantly lower than the rate of synonymous substitution, suggesting that negative selection was acting on these codons.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources