Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Jan 15;25(2):131-42.

Coordinate regulation of NAD(P)H:quinone oxidoreductase and glutathione-S-transferases in primary cultures of rat neurons and glia: role of the antioxidant/electrophile responsive element

Affiliations
  • PMID: 9890628
Comparative Study

Coordinate regulation of NAD(P)H:quinone oxidoreductase and glutathione-S-transferases in primary cultures of rat neurons and glia: role of the antioxidant/electrophile responsive element

J A Ahlgren-Beckendorf et al. Glia. .

Abstract

NAD(P)H:quinone oxidoreductase (QR) and glutathione-S-transferases (GSTs) are among the enzymes believed to protect an organism against oxidative stress. To test if redox-cycling compounds regulate the expression of these enzymes in cells of neural origin, primary cultures of rat cerebellar neurons and glia were treated with tert-butylhydroquinone (tBHQ) and hydroquinone (HQ). Basal levels of endogenous QR and GST activity were significantly greater in glia than neurons; and QR, GSTP1, and A3 were increased in glial but not neuronal cultures by treatment with tBHQ and HQ. A possible role for protein kinase C (PKC) in the tBHQ-mediated increase in QR and GST was evaluated by activating PKC with phorbol 12-myristate 13-acetate or inhibiting PKC with bisindolylmaleimide I. PKC was not involved in maintaining basal expression or mediating the increased expression of GST or QR by tBHQ. Transcriptional activation of QR and rGSTP1 by tBHQ could be mediated through a common responsive element present in the 5'-flanking region of both genes, the antioxidant/electrophile responsive element (ARE/EpRE). Transient transfection of the glial cultures with rGSTP1- or rQR1-ARE/EpRE-luciferase reporter constructs demonstrated that tBHQ transcriptionally activates the ARE/EpRE. Thus, the increased expression of genes regulated by the ARE/EpRE in cells of the central nervous system may provide protection against oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms