Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;26(1-2):3-13.
doi: 10.1016/s0891-5849(98)00205-6.

Mitochondrial function is differentially affected upon oxidative stress

Affiliations
Free article

Mitochondrial function is differentially affected upon oxidative stress

S M Cardoso et al. Free Radic Biol Med. 1999 Jan.
Free article

Abstract

The mechanisms that lead to mitochondrial damage under oxidative stress conditions were examined in synaptosomes treated with ascorbate/iron. A loss of membrane integrity, evaluated by electron microscopy and by LDH leakage, was observed in peroxidized synaptosomes and it was prevented by pre-incubation with vitamin E (150 microM) and idebenone (50 microM). ATP levels decreased, in synaptosomes exposed to ascorbate/iron, as compared to controls. NADH-ubiquinone oxidoreductase (Cx I) and cytochrome c oxidase (Cx IV) activities were unchanged after ascorbate/iron treatment, whereas succinate-ubiquinone oxidoreductase (Cx II), ubiquinol cytochrome c reductase (Cx III) and ATP-synthase (Cx V) activities were reduced by 55%, 40%, and 55%, respectively. The decrease of complex II and ATP-synthase activities was prevented by reduced glutathione (GSH), whereas the other antioxidants tested (vitamin E and idebenone) were ineffective. However, vitamin E, idebenone and GSH prevented the reduction of complex III activity observed in synaptosomes treated with ascorbate/iron. GSH protective effect suggests that the oxidation of protein SH-groups is involved in the inhibition of complexes II, III and V activity, whereas vitamin E and idebenone protection suggests that membrane lipid peroxidation is also involved in the reduction of complex III activity. These results may indicate that the inhibition of the mitochondrial respiratory chain enzymatic complexes, that are differentially affected by oxidative stress, can be recovered by specific antioxidants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources