Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan 22;274(4):2145-56.
doi: 10.1074/jbc.274.4.2145.

Role of ERAB/L-3-hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced cytotoxicity

Affiliations
Free article

Role of ERAB/L-3-hydroxyacyl-coenzyme A dehydrogenase type II activity in Abeta-induced cytotoxicity

S D Yan et al. J Biol Chem. .
Free article

Abstract

Endoplasmic reticulum-associated amyloid beta-peptide (Abeta)-binding protein (ERAB)/L-3-hydroxyacyl-CoA dehydrogenase type II (HADH II) is expressed at high levels in Alzheimer's disease (AD)-affected brain, binds Abeta, and contributes to Abeta-induced cytotoxicity. Purified recombinant ERAB/HADH II catalyzed the NADH-dependent reduction of S-acetoacetyl-CoA with a Km of approximately 68 microM and a Vmax of approximately 430 micromol/min/mg. The contribution of ERAB/HADH II enzymatic activity to Abeta-mediated cellular dysfunction was studied by site-directed mutagenesis in the catalytic domain (Y168G/K172G). Although COS cells cotransfected to overexpress wild-type ERAB/HADH II and variant beta-amyloid precursor protein (betaAPP(V717G)) showed DNA fragmentation, cotransfection with Y168G/K172G-altered ERAB and betaAPP(V717G) was without effect. We thus asked whether the enzyme might recognize alcohol substrates of which the aldehyde products could be cytotoxic; ERAB/HADH II catalyzed oxidation of a variety of simple alcohols (C2-C10) to their respective aldehydes in the presence of NAD+ and NAD-dependent oxidation of 17beta-estradiol. Addition of micromolar levels of synthetic Abeta(1-40) to purified ERAB/HADH II inhibited, in parallel, reduction of S-acetoacetyl-CoA (Ki approximately 1.6 microM), as well as oxidation of 17beta-estradiol (Ki approximately 3.2 microM) and (-)-2-octanol (Ki approximately 2.6 microM). Because micromolar levels of Abeta were required to inhibit ERAB/HADH II activity, whereas Abeta binding to ERAB/HADH II occurred at much lower concentrations (Km approximately 40-70 nM), the latter more closely simulating Abeta levels within cells, Abeta perturbation of ERAB/HADH II was likely to result from mechanisms other than the direct modulation of enzymatic activity. Cells cotransfected to overexpress ERAB/HADH II and betaAPP(V717G) generated malondialdehyde-protein and 4-hydroxynonenal-protein epitopes, which were detectable only at the lowest levels in cells overexpressing either ERAB/HADH II or betaAPP(V717G) alone. Generation of such toxic aldehydes was not observed in cells contransfected to overexpress Y168G/K172G-altered ERAB and betaAPP(V717G). We conclude that the generalized alcohol dehydrogenase activity of ERAB/HADH II is central to the cytotoxicity observed in an Abeta-rich environment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources