[Role of putrescine and potassium transport in regulating the topological state of DNA during adaptation of Escherichia coli to temperature stress]
- PMID: 9891292
[Role of putrescine and potassium transport in regulating the topological state of DNA during adaptation of Escherichia coli to temperature stress]
Abstract
The effect of a temperature increase to 52 degrees C or the addition of ethanol (6%) to an exponential Escherichia coli culture on putrescine and potassium transport was studied. The first stage of heat shock was accompanied by a decrease in the extent of DNA supercoiling, due to the dissociation of the putrescine-DNA complex. The loss of potassium ions at this phase produced a synergistic effect. The second phase of the heat shock was characterized by a reversal in the direction of putrescine and potassium transport, which was accompanied by restoration of the prestress extent of DNA supercoiling. An increase in the ATP pool and cell energy charge resulting from the uncoupling of the energy metabolism and synthetic processes also played an important role in the restoration of the DNA initial topology at the second phase of the heat shock via the activation of the energy-dependent gyrase or the heat shock protein DnaK. A mechanism is suggested that explains the involvement of putrescine in the regulation of DNA topology, which is a universal regulator of gene expression under stress, heat shock in particular.
MeSH terms
Substances
LinkOut - more resources
Medical