Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan 19;99(2):206-10.
doi: 10.1161/01.cir.99.2.206.

Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium

Affiliations

Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium

P G Volders et al. Circulation. .

Abstract

Background: The ventricular action potential exhibits regional heterogeneity in configuration and duration (APD). Across the left ventricular (LV) free wall, this is explained by differences in repolarizing K+ currents. However, the ionic basis of electrical nonuniformity in the right ventricle (RV) versus the LV is poorly investigated. We examined transient outward (ITO1), delayed (IKs and IKr), and inward rectifier K+ currents (IK1) in relation to action potential characteristics of RV and LV midmyocardial (M) cells of the same adult canine hearts.

Methods and results: Single RV and LV M cells were used for microelectrode recordings and whole-cell voltage clamping. Action potentials showed deeper notches, shorter APDs at 50% and 95% of repolarization, and less prolongation on slowing of the pacing rate in RV than LV. ITO1 density was significantly larger in RV than LV, whereas steady-state inactivation and rate of recovery were similar. IKs tail currents, measured at -25 mV and insensitive to almokalant (2 micromol/L), were considerably larger in RV than LV. IKr, measured as almokalant-sensitive tail currents at -50 mV, and IK1 were not different in the 2 ventricles.

Conclusions: Differences in K+ currents may well explain the interventricular heterogeneity of action potentials in M layers of the canine heart. These results contribute to a further phenotyping of the ventricular action potential under physiological conditions.

PubMed Disclaimer

LinkOut - more resources