Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;26(3-4):253-9.
doi: 10.1016/s0891-5849(98)00178-6.

The cardiac acetylcholine-activated, inwardly rectifying K+-channel subunit GIRK1 gives rise to an inward current induced by free oxygen radicals

Affiliations

The cardiac acetylcholine-activated, inwardly rectifying K+-channel subunit GIRK1 gives rise to an inward current induced by free oxygen radicals

G Jeglitsch et al. Free Radic Biol Med. 1999 Feb.

Abstract

Reactive oxygen species (ROS) play a crucial role in pathophysiology of the cardiovascular system. The present study was designed to analyze the redox sensitivity of G-protein-activated inward rectifier K+ (GIRK) channels, which control cardiac contractility and excitability. GIRK1 subunits were heterologously expressed in Xenopus laevis oocytes and the resulting K+ currents were measured with the two-electrode voltage clamp technique. Oxygen free radicals generated by the hypoxanthine/xanthine oxidase system led to a marked increase in the current through GIRK channels, termed superoxide-induced current (I(SO)). Furthermore, I(SO) did not depend on G-protein-dependent activation of GIRK currents by coexpressed muscarinic m2-receptors, but could also be observed when no agonist was present in the bathing solution. Niflumic acid at a concentration of 0.5 mmol/l did not abolish I(SO), whereas 100 micromol/l Ba2+ attenuated I(SO) completely. Catalase (10(6) i.u./l) failed to suppress I(SO), whereas H2O2 concentration was kept close to zero, as measured by chemiluminescence. Hence, we conclude that O2*- or a closely related species is responsible for I(SO) induction. Our results demonstrate a significant redox sensitivity of GIRK1 channels and suggest redox-activation of G-protein-activated inward rectifier K+ channels as a key mechanism in oxidative stress-associated cardiac dysfunction.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources