Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec;34(4):559-65.
doi: 10.1111/j.1365-2141.1976.tb03601.x.

Ultrastructure of sickling and unsickling in time-lapse studies

Ultrastructure of sickling and unsickling in time-lapse studies

J A Hahn et al. Br J Haematol. 1976 Dec.

Abstract

The denser subpopulation of erythrocytes from patients with sickle cell anaemia was deoxygenated to a pO2 of 4.7 kPa or reoxygenated to a pO2 of 12 kPa with a continuous-flow apparatus. Samples were collected into modified Karnovsky's fixative at intervals between 0.5 and 15 S. .The earliest event after deoxygenation was aggreagation of haemoglobin followed by the formation of fibres of 160-200 A diameter. The polymers were always randomly distributed in a loose network. A highly ordered, close packing of fibres characteristic of the nematic liquid crystal was not achieved within 15 S. Depolymerization involved a shortening of fibres followed by aggregation similar to that observed early in the polymerization process and prior to the return to the unperturbed state. Irreversibly sickled cells were the first to demonstrate polymers following deoxygenation and that last to lose polymers after reoxygenation. Polymerization of the haemoglobin preceded the appearnce of the sickled deformity of reversibly sickled cells and, following reoxygenation, the return to the discoid shape lagged behind the disappearance of polymers. These studies, carried out under physiologic conditions, have demonstrated intracellular changes during time intervals that correspond to the normal venous and arterial circulation that may contribute to the pathophysiology of sickling disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources