Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999;20(1):34-41.
doi: 10.1002/(sici)1521-186x(1999)20:1<34::aid-bem5>3.0.co;2-r.

Electrochemical treatment of human KB cells in vitro

Affiliations

Electrochemical treatment of human KB cells in vitro

Y Yen et al. Bioelectromagnetics. 1999.

Abstract

Electrochemical treatment (ECT) of cancer is a promising new method by which direct current is delivered into tumor tissue to induce tumor regression. The purpose of this study is to evaluate the effectiveness of ECT on human cancer cells and to investigate the factors that affect ECT. The biological mechanisms of ECT in cancer treatment were also explored. Using human KB cells, ECT was found to delay cell growth by using 0.3 coulombs (C)/ml (1.5 C in 5 ml of culture medium; 3 V, 400 microA for 62.5 min). From the results of a colony-forming assay, it was clearly demonstrated that increasing the ECT dose decreases tumor cell survival. A cytotoxicity study, in which a methylene blue assay was used, determined that, for 2.5 x 10(5) cells in culture, the 1D50 was 0.68 C/ml. For a fixed dose of 0.6 C/ml (3 C in 5 ml), using higher current and shorter treatment time resulted in better cell survival. Time, therefore, is an important factor. When cell concentration was altered, the survival was higher for increased cell concentrations. A thymidine incorporation assay indicated that the amount of [3H]thymidine incorporated into DNA decreased as the ECT dose increased. After treatment with 1 C/ml (5 C in 5 ml; 3 V, 400 microA for 208.4 min), pH at the anode decreased to 4.53 and at the cathode increased to 10.46. These results indicate that ECT is effective for killing human KB cells in vitro and that the toxicity effect is related to charge, current, and treatment time. The effect of pH alteration on cells is one of the mechanisms of ECT.

PubMed Disclaimer

Publication types

LinkOut - more resources