Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan 29;274(5):2953-62.
doi: 10.1074/jbc.274.5.2953.

Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain

Affiliations
Free article

Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain

R A Bascom et al. J Biol Chem. .
Free article

Erratum in

  • J Biol Chem 1999 Apr 30;274(18):12950

Abstract

The cytoplasmic face of the Golgi contains a variety of proteins with coiled-coil domains. We identified one such protein in a yeast two-hybrid screen, using as bait the peripheral Golgi phosphatidylinositol(4,5)P2 5-phosphatase OCRL1 that is implicated in a human disease, the oculocerebrorenal syndrome. The approximately 2.8-kilobase mRNA is ubiquitously expressed and abundant in testis; it encodes a 731-amino acid protein with a predicted mass of 83 kDa. Antibodies against the sequence detect a novel approximately 84-kDa Golgi protein we termed golgin-84. Golgin-84 is an integral membrane protein with a single transmembrane domain close to its C terminus. In vitro, the protein inserts post-translationally into microsomal membranes with an N-cytoplasmic and C-lumen orientation. Cross-linking indicates that golgin-84 forms dimers, consistent with the prediction of an approximately 400-residue dimerizing coiled-coil domain in its N terminus. The dimerization potential is supported by a data base search that showed that the N-terminal 497 residues of golgin-84 contain a coiled-coil domain that when fused to the RET tyrosine kinase domain had the ability to activate it, forming the RET-II oncogene. Data base searching also indicates golgin-84 is similar in structure and sequence to giantin, a membrane protein that tethers coatamer complex I vesicles to the Golgi.

PubMed Disclaimer

MeSH terms

Associated data