Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;67(2):740-4.
doi: 10.1128/IAI.67.2.740-744.1999.

Impact of the high-affinity proline permease gene (putP) on the virulence of Staphylococcus aureus in experimental endocarditis

Affiliations

Impact of the high-affinity proline permease gene (putP) on the virulence of Staphylococcus aureus in experimental endocarditis

A S Bayer et al. Infect Immun. 1999 Feb.

Abstract

Staphylococcus aureus causes a wide variety of invasive human infections. However, delineation of the genes which are essential for the in vivo survival of this pathogen has not been accomplished to date. Using signature tag mutagenesis techniques and large mutant pool screens, previous investigators identified several major gene classes as candidate essential gene loci for in vivo survival; these include genes for amino acid transporters, oligopeptide transporters, and lantibiotic synthesis (W. R. Schwan, S. N. Coulter, E. Y. W. Ng, M. H. Langhorne, H. D. Ritchie, L. L. Brody, S. Westbrock-Wadman, A. S. Bayer, K. R. Folger, and C. K. Stover, Infect. Immun. 66:567-572, 1998). In this study, we directly compared the virulence of four such isogenic signature tag mutants with that of the parental strain (RN6390) by using a prototypical model of invasive S. aureus infection, experimental endocarditis (IE). The oligonucleotide signature tag (OST) mutant with insertional inactivation of the gene (putP) which encodes the high-affinity transporter for proline uptake exhibited significantly reduced virulence in the IE model across three challenge inocula (10(4) to 10(6) CFU) in terms of achievable intravegetation densities (P, <0.05). The negative impact of putP inactivation on in vivo survival in the IE model was confirmed by simultaneous challenge with the original putP mutant and the parental strain as well as by challenge with a putP mutant in which this genetic inactivation was transduced into a distinct parental strain (S6C). In contrast, inactivation of loci encoding an oligopeptide transporter, a purine repressor, and lantibiotic biosynthesis had no substantial impact on the capacity of OST mutants to survive within IE vegetations. Thus, genes encoding the uptake of essential amino acids may well represent novel targets for new drug development. These data also confirm the utility of the OST technique as an important screening methodology for identifying candidate genes as requisite loci for the in vivo survival of S. aureus.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Altschul S F, Gish W, Miller W, Meyers E W, Lipman D J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. - PubMed
    1. Balwit J M, van Lageveelde P, Vann J M, Proctor R A. Gentamicin-resistant menodione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells. J Infect Dis. 1994;170:1033–1037. - PubMed
    1. Bayer A S, Ramos M D, Menzies B E, Yeaman M R, Shen A, Cheung A L. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis—host defense role for platelet microbicidal proteins. Infect Immun. 1997;65:4652–4660. - PMC - PubMed
    1. Bayer, A. S., P. M. Sullam, M. Ramos, C. Li, A. L. Cheung, and M. R. Yeaman. Staphylococcus aureus induces platelet aggregation via a fibrinogen-dependent mechanism which is independent of principal platelet glycoprotein IIb/IIIa fibrinogen-binding domains. Infect. Immun. 63:3634–3641. - PMC - PubMed
    1. Centers for Disease Control and Prevention. Staphylococcus aureus with reduced susceptibility to vancomycin—United States, 1997. Morbid Mortal Weekly Rep. 1997;46:765–766. - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources