Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb 1;362(1):59-66.
doi: 10.1006/abbi.1998.1011.

Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice

Affiliations

Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice

H C Yen et al. Arch Biochem Biophys. .

Abstract

Adriamycin (ADR) is a potent anticancer drug that causes severe cardiomyopathy. We have previously demonstrated that ADR-induced ultrastructural mitochondrial injury in the heart was attenuated in manganese superoxide dismutase (MnSOD) transgenic mice. To further investigate the biochemical mechanisms by which MnSOD protected mitochondria against ADR-induced damage, cardiac mitochondrial function and activities were evaluated. The results showed that ADR caused significant decrease in state 3 respiration and respiratory control ratio using both complex I and II substrates in nontransgenic mice. In transgenic mice, state 3 respiration for complex I substrates remained unaffected by ADR, but was reduced for complex II substrate. Complex I activity was significantly decreased in nontransgenic, but not in transgenic mice after ADR treatment, suggesting that mitochondrial complex I is sensitive to inactivation by superoxide radicals. The activities of complex II and mitochondrial creatine kinase were decreased by ADR in both nontransgenic and transgenic mice. These results support our previous observations on the protective role of MnSOD on the ultrastructural damage of the heart after ADR treatment and extend the understanding of its mechanisms in mitochondria.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources