Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Sep-Dec;9(3-4):221-37.
doi: 10.1016/s1359-6101(98)00018-5.

The interleukin 1 receptor: ligand interactions and signal transduction

Affiliations
Review

The interleukin 1 receptor: ligand interactions and signal transduction

P E Auron. Cytokine Growth Factor Rev. 1998 Sep-Dec.

Abstract

The interleukin 1 (IL-1) receptor is a critical component in mediating the inflammatory responses of IL-1, which affect nearly every cell type. Recently, major inroads have been made toward understanding the mechanism by which IL-1 interacts with its receptor and activates signal transduction. The receptor-ligand association has been visualized by X-ray crystal structure analysis, revealing intimate details that distinguish IL-1beta from the naturally-occuring receptor antagonist. Signaling studies have focused primarily on the ability of IL-1 to transduce the activation of the transcription factor, NF-kappaB, which is of central importance to inflammatory and immune responses. Virtually all of the effort has targeted the activation of a kinase which results in the phosphorylation of the inhibitory IkappaB molecule at two serines that precedes the proteolytic degradation of this inhibitor and the release of active NF-kappaB. The recent characterization of an IL-1 receptor associated kinase (IRAK) and a continuous molecular path between this kinase and that which directly phosphorylates IkappaB would seem to all but close the basic understanding of IL-1 receptor signal transduction. However, at least half of the IL-1-dependent NF-kappaB activation is independent of IRAK and uses a novel pathway involving the recruitment of phosphatidylinositol 3-kinase (PI3K) to a distinct site within the cytoplasmic domain of the IL-1 receptor. This novel pathway for NF-kappaB activation and the fact that other important transcription factors are also activated by an IL-1 receptor-dependent signal event, clearly defines additional mechanisms that influence inflammation.

PubMed Disclaimer

LinkOut - more resources