Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Nov;406(1):1-8.
doi: 10.1016/s1383-5726(98)00005-3.

Polymorphisms in the human DNA ligase I gene (LIG1) including a complex GT repeat

Affiliations

Polymorphisms in the human DNA ligase I gene (LIG1) including a complex GT repeat

K J Livak et al. Mutat Res. 1998 Nov.

Abstract

Sequencing of a human DNA ligase I cDNA clone derived from HeLa cells revealed two unreported differences with the published sequence: a single base change and a three-base deletion. Both differences are in exon 6, and were analyzed by amplifying a segment containing exon 5, intron 6, and exon 6. The first finding was that intron 6 is approximately 2.6 kb in size, not the 1 kb reported in the literature. By sequence analysis of amplified segments, the single-base difference in exon 6 was shown to be polymorphic, with HeLa cells heterozygous for the A/C difference. Analysis of 60 unrelated individuals found a frequency of 0.5 for each allele. Primer extension reactions across the exon 5/exon 6 boundary were performed on cDNA obtained from HeLa cells and human thymus. The results show that the three-base deletion is due to a variation in splicing. For both HeLa and thymus, two-thirds of the transcripts are like the published cDNA sequence and one-third have the three-base deletion. Finally, sequencing of part of intron 6 revealed the presence of a complex GT repeat consisting of a 48-50 nucleotide polypurine tract followed by a variable number of GT residues. This entire unit of polypurine tract plus GTs is repeated three times. Detection of the repeated sequences required the development of specialized cloning and PCR conditions. Analysis of a pedigree showed that this complex repeat is polymorphic.

PubMed Disclaimer

LinkOut - more resources