Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Oct;38(10):3432-7.

Formation of glucuronic acid conjugates of 7,12-dimethylbenz(a)anthracene phenols in 7,12-dimethylbenz(a)anthracene-treated hamster embryo cell cultures

  • PMID: 99231

Formation of glucuronic acid conjugates of 7,12-dimethylbenz(a)anthracene phenols in 7,12-dimethylbenz(a)anthracene-treated hamster embryo cell cultures

W M Baird et al. Cancer Res. 1978 Oct.

Abstract

Secondary cultures of hamster embryo cells exposed to 0.5 nmol [G-3H]7,12-dimethylbenz(a)anthracene (DMBA) per ml medium metabolized more than 90% of the DMBA within 48 hr. Samples of medium were extracted with chloroform, methanol, and water. The chloroform phases contained about one-third of the DMBA metabolites; the major chloroform-extractable metabolite was 8,9-dihydro-8,9-dihydroxy-7,12-dimethylbenz(a)anthracene. Beta-glucuronidase treatment of the aqueous methanol-soluble metabolites converted almost one-half of them to chloroform-soluble metabolites, of which more than 80% were identified as phenolic derivatives of DMBA. Similar metabolite profiles were obtained by treating the medium with beta-glucuronidase before chloroform extraction. Separation of the methyl group-hydroxylated derivatives of DMBA from the phenolic derivatives was accomplished by high-pressure liquid chromatography. Small amounts of hydroxymethyl derivatives were detected only in the chloroform-extractable material, whereas DMBA phenols were the major component of the beta-glucuronidase-released mateirla. These results indicate that the major pathway of DMBA metabolism in hamster embryo cells is oxidation of the aromatic rings and not oxidation of the methyl groups.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms