A rapid non-culture-based assay for clinical monitoring of phenotypic resistance of human immunodeficiency virus type 1 to lamivudine (3TC)
- PMID: 9925516
- PMCID: PMC89061
- DOI: 10.1128/AAC.43.2.264
A rapid non-culture-based assay for clinical monitoring of phenotypic resistance of human immunodeficiency virus type 1 to lamivudine (3TC)
Abstract
Monitoring for lamivudine (3TC) resistance is important both for the clinical management of human immunodeficiency virus type 1 (HIV-1)-infected patients treated with 3TC and for surveillance of transmission of 3TC-resistant HIV-1. We developed a novel non-culture-based assay for the rapid analysis of phenotypic resistance to 3TC of HIV-1 in plasma. The assay measures the susceptibility of HIV-1 reverse transcriptase (RT) activity to 3TC triphosphate (3TC-TP) in plasma. RT detection was done by the Amp-RT assay, an ultrasensitive PCR-based RT assay. Under our assay conditions, we found that 5 microM 3TC-TP inhibited RT activity from wild-type (WT), zidovudine-resistant, or nevirapine-resistant HIV-1 but not from HIV-1 carrying either the M184V mutation or multidrug (MD) resistance mutations (77L/116Y/151M or 62V/75I/77L/116Y/151M). Mixing experiments showed a detection threshold of 10% 3TC-resistant virus (M184V) in a background of WT HIV-1. To validate the assay for the detection of phenotypic resistance of HIV-1 to 3TC in plasma samples, HIV-1 RT in 30 plasma specimens collected from 15 patients before and during therapy with 3TC was tested for evidence of phenotypic resistance by the Amp-RT assay. The results were compared with those of genotypic analysis. The RT in 12 samples was found to be 3TC sensitive, while the RT in 18 samples had evidence of phenotypic resistance. All 12 samples with 3TC-sensitive RT had WT genotypes at codon 184 and were retrieved before treatment with 3TC. In contrast, all 18 specimens with 3TC-resistant RT were posttherapy samples. This assay provides a simple, rapid, and reliable method for the detection of phenotypic resistance of HIV-1 to 3TC in plasma.
Figures
References
-
- Boucher C A B, Cammack N, Schipper P, Schuurman R, Rouse P, Wainberg M A, Cameron J M. High level resistance to (−) enantiomeric 2′-deoxy-3′-thiacytidine in vitro is due to one amino acid substitution in the catalytic site of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 1993;37:2231–2234. - PMC - PubMed
-
- Caroline M P, Faulds D. Lamivudine: a review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in the management of HIV infection. Drugs. 1997;53:657–680. - PubMed
-
- Carpenter C C, Fischl M A, Hammer S M, Hirsch M S, Jacobsen D M, Katzenstein D A, Montaner J S, Richman D D, Saag M S, Schooley R T, Thompson M A, Vella S, Yeni P G, Volberding P A. Antiviral therapy for HIV infection in 1997: updated recommendations of the International AIDS Society—USA panel. JAMA. 1997;277:1962–1969. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
