Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;65(2):514-22.
doi: 10.1128/AEM.65.2.514-522.1999.

Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA

Affiliations

Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA

S G Acinas et al. Appl Environ Microbiol. 1999 Feb.

Abstract

In a previous study (S. G. Acinas, F. Rodríguez-Valera, and C. Pedrós-Alió, FEMS Microbiol. Ecol. 24:27-40, 1997), community fingerprinting by 16S rDNA restriction analysis applied to Mediterranean offshore waters showed that the free-living pelagic bacterial community was very different from the bacterial cells aggregated or attached to particles of more than about 8 micrometer. Here we have studied both assemblages at three depths (5, 50, and 400 m) by cloning and sequencing the 16S rDNA obtained from the same samples, and we have also studied the samples by scanning electron microscopy to detect morphology patterns. As expected, the sequences retrieved from the assemblages were very different. The subsample of attached bacteria contained very little diversity, with close relatives of a well-known species of marine bacteria, Alteromonas macleodii, representing the vast majority of the clones at every depth. On the other hand, the free-living assemblage was highly diverse and varied with depth. At 400 m, close relatives of cultivated gamma Proteobacteria predominated, but as shown by other authors, near the surface most clones were related to phylotypes described only by sequence, in which the alpha Proteobacteria of the SAR11 cluster predominated. The new technique of rDNA internal spacer analysis has been utilized, confirming these results. Clones representative of the A. macleodii cluster have been completely sequenced, producing a picture that fits well with the idea that they could represent a genus with at least two species and with a characteristic depth distribution.

PubMed Disclaimer

Figures

FIG. 1
FIG. 1
Scanning electron microscopy of attached bacterial communities (A and B) and free-living bacterial communities (C).
FIG. 2
FIG. 2
Methaphor 2% gel fragments from RISA analyses of free-living and attached (ATT) bacterioplankton communities from surface (SUR), DCM, and 400 m (400). The arrows show the bands that were cloned and sequenced.
FIG. 3
FIG. 3
Phylogenetic tree based on 1,492 nucleotide positions showing relationships of the surface (SUR), DCM, and 400-m (400) clones related to A. macleodii and representative bacterial 16S rRNA genes within the γ subdivision of Proteobacteria. An unrooted phylogenetic tree was obtained by performing a neighbor-joining analysis. Bootstrap values over 50% are shown below the segments.

References

    1. Acinas S G, Rodríguez-Valera F, Pedrós-Alió C. Spatial and temporal variation in marine bacterioplankton diversity as shown by RFLP fingerprinting of PCR amplified 16S rDNA. FEMS Microbiol Ecol. 1997;24:27–40.
    1. Albright L J, MacCrae S K, May B E. Attached and free-floating bacterioplankton in Howe Sound, British Columbia, a coastal marine fjord embayment. Appl Environ Microbiol. 1986;51:614–621. - PMC - PubMed
    1. Alfreider A, Pernthaler J, Amman R, Sattler B, Glöckner F O, Wille A, Psenner R. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl Environ Microbiol. 1996;62:2138–2144. - PMC - PubMed
    1. Alldredge A L, Cole J J, Caron D A. Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters. Limnol Oceanogr. 1986;31:68–78.
    1. Amman R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169. - PMC - PubMed

Publication types

Associated data

LinkOut - more resources