Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb 1;246(2):384-94.
doi: 10.1006/excr.1998.4316.

Fanconi anemia C protein acts at a switch between apoptosis and necrosis in mitomycin C-induced cell death

Affiliations

Fanconi anemia C protein acts at a switch between apoptosis and necrosis in mitomycin C-induced cell death

C Guillouf et al. Exp Cell Res. .

Abstract

Deregulation of apoptosis seems to be a hallmark of the Fanconi anemia (FA) syndrome. In order to further define the role of the FA protein from complementation group C (FAC) in apoptosis, we characterized parameters modified during the mitomycin-C (MMC)-induced apoptotic program. It is shown that despite a higher level of cell death for FA compared to normal lymphoblasts after MMC treatment, FA cells do not display a marked DNA fragmentation. Furthermore, while playing a central role in MMC apoptosis of normal lymphoblasts, the activity of caspase-3-like proteases is altered in FA cells. Interestingly, the disruption of the mitochondrial transmembrane potential (Deltapsi), an early event that can lead to apoptotic or to necrotic death, is accomplished similarly in FA and in normal cells. Finally, it is shown that the overexpressed FAC protein inhibited the apoptotic steps, with the exception of the decrease of the Deltapsi. Altogether, our results indicate that the FAC protein acts at a step preceding the activation of the caspases and after the modification of the Deltapsi, a decision point at which cells can be pushed toward either apoptosis or necrosis and which, consequently, regulates the balance between the two modes of cell death.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources