Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Dec 21;9(18):4045-9.

NMDA antagonist displays anticonvulsant effect via NO synthesis inhibition in penicillin-treated rat hippocampal slices

Affiliations
  • PMID: 9926845

NMDA antagonist displays anticonvulsant effect via NO synthesis inhibition in penicillin-treated rat hippocampal slices

W Lu et al. Neuroreport. .

Abstract

The present study investigated the role of nitric oxide (NO) in epileptogenesis and whether this role correlated with ionotropic glutamate receptor (IGR). Using a self-constructed NO-sensitive microelectrode (SNM), we observed the effect of nitric oxide synthase (NOS) inhibitors, NMDA and non-NMDA selective antagonists on penicillin(PEN)-treated hippocampal slices by simultaneously recording evoked field potentials and nitric oxide release from CA1 pyramidal neurons. 7-nitroindazole (7-NI),Nomega-nitro-L-arginine (L-NNA) and DL-2-amino-phospho-novaleric acid (APV), but not 6,7-dinitroquinoxaline-2,3 (1h,4h)-dione(DNQX), depressed NO release and partly reversed PEN's epileptogenetic effect, while APV + 7-NI + L-NNA did not display a further inhibitory effect. These findings suggest both NOS inhibitor and NMDA antagonist involve as anticonvulsant factors in epileptogenesis, providing direct evidence for NO release in response to NMDA receptor activation. The anticonvulsant effect of NMDA antagonist may ascribe to its action on NO release.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources