Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;27(2):246-9.

Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450

Affiliations
  • PMID: 9929510

Effect of methanol, ethanol, dimethyl sulfoxide, and acetonitrile on in vitro activities of cDNA-expressed human cytochromes P-450

W F Busby Jr et al. Drug Metab Dispos. 1999 Feb.

Abstract

The effects of methanol, ethanol, dimethyl sulfoxide (DMSO), and acetonitrile were studied in vitro on nine individual, cDNAexpressed cytochrome P-450 activities (phenacetin O-deethylase for CYP1A1 and CYP1A2, coumarin 7-hydroxylase for CYP2A6, testosterone 6beta-hydroxylase for CYP3A4, 7-ethoxy-4-trifluoromethylcoumarin deethylase for CYP2B6, paclitaxel 6alpha-hydroxylase for CYP2C8, diclofenac 4'-hydroxylase for CYP2C9, S-mephenytoin 4-hydroxylase for CYP2C19, and (+/-)-bufuralol 1'-hydroxylase for CYP2D6) in commercially available human lymphoblastoid microsomes. These data show that specific solvents have enzyme-selective effects on P-450 activities. Methanol did not substantially inhibit (</=10%) any of the activities at 0.3%, but did inhibit CYP1A1, CYP2B6, CYP2C9, and CYP2D6 by 12 to 26% at 1%. In contrast, 0.1% ethanol inhibited CYP1A1, CYP2B6, and CYP2C19 by 20 to 30%. Ethanol at 1% did not inhibit CYP1A2, CYP3A4, CYP2C8, and CYP2C9. DMSO inhibited CYP3A4, CYP2C19, and CYP2D6 by 15 to 25% at 0.1%. However, DMSO had little effect on CYP1A2, CYP2A6, and CYP2C8. Acetonitrile, like methanol, did not inhibit any P-450 activity at 0.3% solvent except for CYP1A1 (26%) and CYP2B6 (13%). At 1%, acetonitrile decreased activities of CYP1A1 and CYP2B6 by 40 to 60%, and inhibited CYP2A6, CYP3A4, CYP2C19, and CYP2D6 activity by 10 to 20%. Acetonitrile also increased CYP2C9 activity by 10 to 15% above control values at 1 to 3% solvent. Excluding solubility considerations, methanol and acetonitrile appear to be the most suitable solvents for the introduction of substances to cytochrome P-450 incubations for in vitro metabolism studies.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources