Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan;437(2):261-6.
doi: 10.1007/s004240050778.

The activity-dependent potentiation of the slow Ca2+-activated K+ current regulates synaptic efficacy in rat CA1 pyramidal neurons

Affiliations

The activity-dependent potentiation of the slow Ca2+-activated K+ current regulates synaptic efficacy in rat CA1 pyramidal neurons

M Borde et al. Pflugers Arch. 1999 Jan.

Abstract

Activity-dependent modifications of neuronal excitability are of key functional importance because they accomplish general postsynaptic control of the flow of synaptic signals. We tested the modifications of synaptic efficacy evoked in rat CA1 hippocampal pyramidal neurons during the short-term activity-dependent reduction in excitability termed "response depression". The in vitro slice technique and recordings with sharp electrodes in the current- and voltage-clamp modes were used. Depression was induced by repeatedly stimulating the Schaffer collateral and stratum oriens. Repeated synaptic stimuli also depressed subsequent responses evoked by transmembrane current pulse injection and vice versa. Depression was characterised by a marked decrease in synaptic efficacy that outlasted stimuli for several minutes and was generalized to all pyramidal cells. The action potential frequency adaptation, the slow after-hyperpolarization and the underlying slow Ca2+-dependent K+ current (IAHP) were potentiated during depression. The potentiated IAHP caused depression by acting as a cumulative negative feedback that reduced synaptic efficacy by increasing the membrane conductance and hyperpolarizing the neurone. This depression may act as a homeostatic negative feedback mechanism to limit the rise in intracellular Ca2+ concentration and stabilize the membrane potential following intense synaptic activation.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources