Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;72(2):576-84.
doi: 10.1046/j.1471-4159.1999.0720576.x.

Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase

Affiliations

Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase

M Lesort et al. J Neurochem. 1999 Feb.

Abstract

The modulation of tau phosphorylation in response to insulin was examined in human neuroblastoma SH-SY5Y cells. Insulin treatment resulted in a transient increase in tau phosphorylation followed by a decrease in tau phosphorylation that correlated directly with a sequential activation and deactivation of glycogen synthase kinase-3beta (GSK-3beta). The insulin-induced increase in tau phosphorylation and concurrent activation of GSK-3beta was rapid (<2 min) and transient, and was associated with increased tyrosine phosphorylation of GSK-3beta. The increase in GSK-3beta tyrosine phosphorylation corresponded directly to an increase in the association of Fyn tyrosine kinase with GSK-3beta, and Fyn immunoprecipitated from cells treated with insulin for 1 min phosphorylated GSK-3beta to a significantly greater extent than Fyn immunoprecipitated from control cells. Subsequent to the increase in GSK-3beta activation and tau phosphorylation, treatment of cells with insulin for 60 min resulted in a dephosphorylation of tau and a decrease in GSK-3beta activity. Thus, insulin rapidly and transiently activated GSK-3beta and modulated tau phosphorylation, alterations that may contribute to neuronal plasticity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources