Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;8(2):205-15.
doi: 10.1093/hmg/8.2.205.

Sequences flanking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications and unstable sequences with homologies to telomeric and other centromeric locations

Affiliations

Sequences flanking the centromere of human chromosome 10 are a complex patchwork of arm-specific sequences, stable duplications and unstable sequences with homologies to telomeric and other centromeric locations

M S Jackson et al. Hum Mol Genet. 1999 Feb.

Abstract

Little is known about sequence organization close to human centromeres, despite empirical and theoretical data which suggest that it may be unusual. Here we present maps which physically define large sequence duplications flanking the centromeric satellites of human chromosome 10, together with a fluorescence in situ hybridization (FISH) analysis of pericentromeric sequence stability. Our results indicate that the duplications on each chromosome arm are organized into two blocks of approximately 250 and 150 kb separated by approximately 300 kb of non-duplicated DNA. The larger proximal blocks, containing ZNF11A, ZNF33A and ZNF37A (10p11) and ZNF11B, ZNF33B and ZNF37B (10q11), are inverted. However, the smaller distal blocks, containing D10S141A (10p11) and D10S141B (10q11), are not. A primate FISH analysis indicates that these loci were duplicated before the divergence of orang-utans from other Great Apes, that a cytogenetically cryptic pericentric inversion may have been involved in the formation of the flanking duplications and that they have undergone further rearrangement in other primate species. More surprising is the fact that sequences across the entire pericentromeric region appear to have undergone unprecedented levels of duplication, transposition, inversion and either deletion or sequence divergence in all primate species analysed. Extrapolating our data to the whole genome suggests that a minimum of 50 Mb of DNA in centromere-proximal regions is subject to an elevated level of mechanistically diverse sequence rearrangements compared with the bulk of genomic DNA.

PubMed Disclaimer

Publication types

LinkOut - more resources