Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Feb 5;64(2):151-64.
doi: 10.1016/s0169-328x(98)00308-8.

Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration

Affiliations
Comparative Study

Differential regulation of angiotensinogen and AT1A receptor mRNA within the rat subfornical organ during dehydration

S W Barth et al. Brain Res Mol Brain Res. .

Abstract

The present study describes the differential rostro-caudal patterning of angiotensinogen (AoGen) and AT1A receptor mRNAs in the rat SFO using specific and validated oligodeoxynucleotide probes for in situ hybridization. Highest levels of AoGen-specific gene expression were observed in the rostral region of the SFO with gradually decreasing intensity towards the caudal region of this sensory circumventricular organ lacking blood-brain barrier function. AoGen-related hybridization signals proved to be specifically prominent above cells in lateral aspects of the SFO, surrounding septal venules. Maximal expression of the AT1A receptor-specific gene, on the other hand, could be detected in the neuron-enriched, ventro-medial core region and dorsal annulus of the SFO, with low-intensity hybridization signals in its rostral and caudal parts. Water deprivation for 48 h, leading to extracellular hypertonic hypovolemia with elevated circulating AngII concentrations within the physiological range, caused a significant increase in AoGen-specific hybridization signals in the rostral and medial SFO regions. AT1A receptor gene expression and AngII receptor binding were markedly stimulated in the medial and caudal regions of the SFO (core and annulus) as compared to euhydrated animals. These data indicate, that mild dehydration differentially up-regulates AoGen- and AT1A receptor-specific mRNA formation as well as AT1 receptor binding in distinct regions of the SFO, and supports the involvement of different cellular subgroups in the expression of two major components of the central nervous renin-angiotensin system in this sensory circumventricular organ.

PubMed Disclaimer

Publication types

LinkOut - more resources