Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec;58(6):1450-60.
doi: 10.1172/JCI108601.

Effects of fasting on insulin binding, glucose transport, and glucose oxidation in isolated rat adipocytes: relationships between insulin receptors and insulin action

Effects of fasting on insulin binding, glucose transport, and glucose oxidation in isolated rat adipocytes: relationships between insulin receptors and insulin action

J M Olefsky. J Clin Invest. 1976 Dec.

Abstract

Insulin binding, glucose transport, and glucose oxidation were studied in isolated adipocytes obtained from fasting rats. Fasting led to an increase in the overall binding affinity for insulin, while the number of receptor sites per cell remained constant. Glucose oxidation was markedly attenuated during fasting. Basal rates of oxidation decreased by about 50%, while insulin-stimulated rates decreased 6 to 10-fold. Glucose transport was assessed by measuring initial uptake rate of 2-deoxy-glucose. Fasting led to a 40-50% decrease in the apparent maximal transport capacity (Vmax) of 2-deoxy-glucose uptake with no change in apparent Km. A progressive decrease in basal and insulin-stimulated rates of 2-deoxy-glucose uptake was seen from 24-72 h of starvation and a significant correlation (r=0.85, P less than 0.001) existed between basal and maximal insulin-stimulated uptake rates in individual animals. When 2-deoxy-glucose uptake was plotted as a function of insulin bound, due to the decrease in maximal uptake capacity, cells from fasting animals took up less hexose for any amount of insulin bound. When the insulin bound was plotted as a function of the percent insulin effect on uptake, control cells and cells from 24-h-fasted rats gave comparable results, while cells from 48- and 72-h-fasted animals still took up less hexose for any amount of bound insulin. The effects of fasting on 3-O-methyl glucose uptake were comparable to the 2-deoxy-glucose data.

In conclusion: (a) insulin binding is increased during fasting due to an increased overall binding affinity with no change in receptor number; (b) glucose oxidation is severely impaired during fasting; (c) 2-deoxy-glucose uptake decreases with fasting due to a decrease in maximal transport capacity (Vmax) with no change in Km; (d) the decrease in glucose oxidation is much greater than the decrease in glucose transport, indicating impaired intracellular oxidative metabolism; and (e) coupling between insulin receptors and the glucose transport system is normal after 24 h of fasting but is impaired at 48 and 72 h.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Metabolism. 1975 Apr;24(4):517-27 - PubMed
    1. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1118-26 - PubMed
    1. J Clin Invest. 1975 Dec;56(6):1499-1508 - PubMed
    1. J Biol Chem. 1957 Feb;224(2):963-9 - PubMed
    1. J Biol Chem. 1964 Feb;239:375-80 - PubMed

Publication types