Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb 12;274(7):4389-99.
doi: 10.1074/jbc.274.7.4389.

Cargo can modulate COPII vesicle formation from the endoplasmic reticulum

Affiliations
Free article

Cargo can modulate COPII vesicle formation from the endoplasmic reticulum

M Aridor et al. J Biol Chem. .
Free article

Abstract

The COPII coat complex found on endoplasmic reticulum (ER)-derived vesicles plays a critical role in cargo selection. We now address the potential role of biosynthetic cargo in modulating COPII coat assembly and vesicle budding. The ER accumulation of vesicular stomatitis glycoprotein (VSV-G), a transmembrane protein, or the soluble PiZ variant of alpha1-antitrypsin, reduced levels of general COPII vesicle formation in vivo. Consistent with this result, conditions that prevent the export of VSV-G from the ER led to a significant inhibition of general COPII vesicle budding from ER microsomes and the export of an endogenous recycling protein p58 in vitro. In contrast, synchronized export of VSV-G stimulated COPII vesicle budding both in vivo and in vitro. Under conditions where VSV-G is retained in the ER, we find that it can to be recovered in pre-budding complexes containing COPII components. These results suggest that the export of biosynthetic cargo is integrated with ER functions involved in protein folding and oligomerization. The ability of biosynthetic cargo to prevent or enhance ER export suggests that interactions of cargo with the COPII machinery contribute to the formation of vesicles budding from the ER.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources