Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Oct;262(1):151-68.
doi: 10.1113/jphysiol.1976.sp011590.

Methionine transport by pig colonic mucosa measured during early post-natal development

Methionine transport by pig colonic mucosa measured during early post-natal development

P S James et al. J Physiol. 1976 Oct.

Abstract

New-born pig proximal colon, incubated in vitro, transports methionine with a Km of 0-33 mM and a Vmax of 0-62 mumole cm-2h-1. There is still a net transport of methionine on day 4, but the Km now increases to 10 mM and the Vmax falls to 0-15 mumole cm-2h-1. There is no net transport of methionine across proximal colons taken from 10-day-old pigs. 2. The mean intramucosal concentration of methionine, following incubation in medium containing 1 mM methionine, is 7-18+/-0-8 mM for the new-born, 0-55+/-0-05 mM for the 4-day-old and 0-31+/-0-06 mM for the 10-day-old pig. 3. Both methionine and glucose cause an immediate increase in the short-circuit current of new-born and 1-day-old pig colons. The kinetics for this interaction with methionine gives a Km for methionine of 0-24 mM and a maximum effect of 27 muA cm-2. This effect is not seen in 4- or 10-day-old pigs. 4. Net Na+ transport across the new-born pig proximal colon, measured in the absence of methionine, is about three times that calculated from the measured short-circuit current. Methionine increases the mucosal to serosal flux of Na+ by an amount roughly equal to that predicted from the increase in short-circuit current. The ability of glucose and methionine to affect short-circuit current is lost by day 4. 5. Short-circuit current, measured in the absence of methionine or glucose, increases between day 1 and 2 of post-natal life. This increased electrogenicity is maintained for up to at least 10 days after birth. 6. The pig proximal colon has many of the properties of a small intestine at birth. It actively transports methionine and the presence of methionine stimulates the absorption of Na+. These effects could be physiologically important in the pig, where the normal absorptive function of the intestine is temporarily inhibited at birth by the intestinal transmission of immune globulins.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1975 Jul;249(1):103-17 - PubMed
    1. Biochim Biophys Acta. 1976 Jan 21;419(2):391-4 - PubMed
    1. Biochim Biophys Acta. 1960 Jul 1;41:271-82 - PubMed
    1. Biochim Biophys Acta. 1961 Nov 11;53:521-36 - PubMed
    1. Gastroenterology. 1961 Nov;41:500-4 - PubMed

LinkOut - more resources