Extrinsic inputs to intrinsic neurons in the porcine heart in vitro
- PMID: 9950925
- DOI: 10.1152/ajpregu.1999.276.2.R455
Extrinsic inputs to intrinsic neurons in the porcine heart in vitro
Abstract
Convergence of inputs from extrinsic cardiac nerves [vagus and cardiopulmonary (CPN)] on intrinsic cardiac neurons was investigated in the pig (Sus scrofa). A segment of the right atrial wall containing epicardial neurons along with attached stumps of the right vagus nerve and CPN was maintained in vitro; intracellular recordings were made from 57 neurons. Three types of neuron were identified by their responses to long intracellular depolarizing current pulses: phasic [discharged 1 action potential (AP); 40%]; accommodating (discharged multiple APs decrementing in frequency during pulse; 33%); and tonic (discharged multiple APs at a high frequency; 27%). Sixty-six percent of the neurons responded with excitatory postsynaptic potentials (EPSP) to vagal nerve stimulation; two-thirds of these cells fired APs when EPSP amplitude exceeded threshold level. Postsynaptic responses to vagal nerve stimulation were mediated by nicotinic ion channels; responses were eliminated by hexamethonium. CPN stimulation produced EPSPs but no APs in 17% of the neurons. All neurons responding with postsynaptic depolarizations to CPN stimulation also received vagal inputs. Combined stimulation of the vagus nerve and CPN produced APs in all but one of these neurons. Timolol eliminated postsynaptic responses from CPN stimulation, indicating that these responses involved beta-adrenergic receptors and likely resulted from activation of sympathetic postganglionic terminals. These results show that some intrinsic cardiac neurons receive convergent inputs from the CPN and vagus nerve. It is suggested that such neurons represent intraganglionic sites for sympathetic-parasympathetic interactions in neural control of the heart.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
