Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar;37(3):581-90.
doi: 10.1128/JCM.37.3.581-590.1999.

Genetic diversity and population structure of Vibrio cholerae

Affiliations

Genetic diversity and population structure of Vibrio cholerae

P Beltrán et al. J Clin Microbiol. 1999 Mar.

Abstract

Multilocus enzyme electrophoresis (MLEE) of 397 Vibrio cholerae isolates, including 143 serogroup reference strains and 244 strains from Mexico and Guatemala, identified 279 electrophoretic types (ETs) distributed in two major divisions (I and II). Linkage disequilibrium was demonstrated in both divisions and in subdivision Ic of division I but not in subdivision Ia, which includes 76% of the ETs. Despite this evidence of relatively frequent recombination, clonal lineages may persist for periods of time measured in at least decades. In addition to the pandemic clones of serogroups O1 and O139, which form a tight cluster of four ETs in subdivision Ia, MLEE analysis identified numerous apparent clonal lineages of non-O1 strains with intercontinental distributions. A clone of serogroup O37 that demonstrated epidemic potential in the 1960s is closely related to the pandemic O1/O139 clones, but the nontoxigenic O1 Inaba El Tor reference strain is not. A strain of serogroup O22, which has been identified as the most likely donor of exogenous rfb region DNA to the O1 progenitor of the O139 clone, is distantly related to the O1/O139 clones. The close evolutionary relationships of the O1, O139, and O37 epidemic clones indicates that new cholera clones are likely to arise by the modification of a lineage that is already epidemic or is closely related to such a clone.

PubMed Disclaimer

Figures

FIG. 1
FIG. 1
Dendrogram showing genetic relationships of the ETs of V. cholerae, based on MLEE analysis (17 loci). The dendrogram was constructed from a matrix of pairwise genetic distances by the UPGMA method. The lineages of subdivision Ic and of groups A, B, and C of subdivision Ia are truncated. The relationships of the 37 ETs in group A are shown in the dendrogram in Fig. 2.
FIG. 2
FIG. 2
Dendrogram showing genetic relationships of the 37 ETs of V. cholerae in group A of subdivision Ia of division I, based on MLEE analysis (17 loci). The dendrogram was constructed from a matrix of pairwise genetic distances by the UPGMA method.

References

    1. Albert M J, Siddique A K, Islam M S, Faruque A S, Ansaruzzaman M, Faruque S M, Sack R B. Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet. 1993;341:704. - PubMed
    1. Bik E M, Bunschoten A E, Gouw R D, Mooi F R. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995;14:209–216. - PMC - PubMed
    1. Bik E M, Gouw R D, Mooi F R. DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains. J Clin Microbiol. 1996;34:1453–1461. - PMC - PubMed
    1. Blake P A, Weaver R E, Hollis D G. Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol. 1980;34:341–367. - PubMed
    1. Boyd E F, Nelson K, Wang F-S, Whittam T S, Selander R K. Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA. 1994;91:1280–1284. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources