Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography
- PMID: 25322194
- PMCID: PMC4275164
- DOI: 10.1021/bc500315j
Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography
Abstract
The avidin-biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidin-modified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [(18)F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [(18)F]-fluorobenzylamide-poly(ethylene glycol)4-biotin ([(18)F]NPB4) was prepared with high purity and specific activity. The attachment of the [(18)F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain.
Figures
References
-
- Diamandis E. P.; Christopoulos T. K. (1991) The biotin-(strept)avidin system: principles and applications in biotechnology. Clin. Chem. 37, 625–36. - PubMed
-
- Fahmy T. M.; Samstein R. M.; Harness C. C.; Mark Saltzman W. (2005) Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 26, 5727–36. - PubMed
-
- Susumu K.; Mei B. C.; Mattoussi H. (2009) Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat. Protoc. 4, 424–36. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
