Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Nov 29;480(1):1-18.
doi: 10.1002/cne.20278.

Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish

Affiliations

Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish

Shin-Ichi Higashijima et al. J Comp Neurol. .

Abstract

Zebrafish are an excellent model for studies of the functional organization of neuronal circuits, but little is known regarding the transmitter phenotypes of the neurons in their nervous system. We examined the distribution in spinal cord and hindbrain of neurons expressing markers of transmitter phenotype, including the vesicular glutamate transporter (VGLUT) genes for glutamatergic neurons, the neuronal glycine transporter (GLYT2) for glycinergic neurons, and glutamic acid decarboxylase (GAD65/67) for GABAergic neurons. All three markers were expressed in a large domain in the dorsal two-thirds of spinal cord, with additional, more ventral expression domains for VGLUT2 and GAD/GABA. In the large dorsal domain, dual in situ staining showed that GLYT2-positive cells were intermingled with VGLUT2 cells, with no dual-stained neurons. Many of the neurons in the dorsal expression domain that were positive for GABA markers at embryonic stages were also positive for GLYT2, suggesting that the cells might use both GABA and glycine, at least early in their development. The intermingling of neurons expressing inhibitory and excitatory markers in spinal cord contrasted markedly with the organization in hindbrain, where neurons expressing a particular marker were clustered together to form stripes that were visible running from rostral to caudal in horizontal sections and from dorsomedial to ventrolateral in cross sections. Dual labeling showed that the stripes of neurons labeled with one transmitter marker alternated with stripes of cells labeled for the other transmitter phenotypes. The differences in the distribution of excitatory and inhibitory neurons in spinal cord versus hindbrain may be tied to differences in their patterns of development and functional organization.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources