Characterization of the maleylacetate reductase MacA of Rhodococcus opacus 1CP and evidence for the presence of an isofunctional enzyme
- PMID: 9657989
- PMCID: PMC107314
- DOI: 10.1128/JB.180.14.3503-3508.1998
Characterization of the maleylacetate reductase MacA of Rhodococcus opacus 1CP and evidence for the presence of an isofunctional enzyme
Abstract
Maleylacetate reductases (EC 1.3.1.32) have been shown to contribute not only to the bacterial catabolism of some usual aromatic compounds like quinol or resorcinol but also to the degradation of aromatic compounds carrying unusual substituents, such as halogen atoms or nitro groups. Genes coding for maleylacetate reductases so far have been analyzed mainly in chloroaromatic compound-utilizing proteobacteria, in which they were found to belong to specialized gene clusters for the turnover of chlorocatechols or 5-chlorohydroxyquinol. We have now cloned the gene macA, which codes for one of apparently (at least) two maleylacetate reductases in the gram-positive, chlorophenol-degrading strain Rhodococcus opacus 1CP. Sequencing of macA showed the gene product to be relatively distantly related to its proteobacterial counterparts (ca. 42 to 44% identical positions). Nevertheless, like the known enzymes from proteobacteria, the cloned Rhodococcus maleylacetate reductase was able to convert 2-chloromaleylacetate, an intermediate in the degradation of dichloroaromatic compounds, relatively fast and with reductive dehalogenation to maleylacetate. Among the genes ca. 3 kb up- and downstream of macA, none was found to code for an intradiol dioxygenase, a cycloisomerase, or a dienelactone hydrolase. Instead, the only gene which is likely to be cotranscribed with macA encodes a protein of the short-chain dehydrogenase/reductase family. Thus, the R. opacus maleylacetate reductase gene macA clearly is not part of a specialized chlorocatechol gene cluster.
Figures


References
-
- Alting-Mees M A, Sorge J A, Short J M. pBluescriptII: multifunctional cloning and mapping vectors. Methods Enzymol. 1992;216:483–495. - PubMed
-
- Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. - PubMed
-
- Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K, editors. Current protocols in molecular biology. New York, N.Y: John Wiley & Sons; 1987.
-
- Bang S-W, Zylstra G J. Abstracts of the 97th General Meeting of the American Society for Microbiology 1997. Washington, D.C: American Society for Microbiology; 1997. Cloning and sequencing of the hydroquinone 1,2-dioxygenase, γ-hydroxymuconic semialdehyde dehydrogenase, maleylacetate reductase genes from Pseudomonas fluorescens ENV2030, abstr. Q-383; p. 519.
-
- Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases