Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus
- PMID: 11356043
- DOI: 10.1006/gcen.2001.7644
Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus
Abstract
A sequence coding for an arginine vasotocin (AVT) receptor has been identified by the screening of a hepatic cDNA library from the teleost Platichthys flesus. The 2701-bp receptor sequence is predicted to yield a 384-amino acid peptide, analysis of which indicates a seven-transmembrane spanning sequence typical of G-protein-coupled receptors with the N terminus on the outer surface of the cell membrane. Sequence analysis showed this sequence to have a high homology with the Catostomus commersoni AVT receptor (76%) and mammalian vasopressin V(1)-type receptor (62%), but only 55% homology with the C. commersoni isotocin receptor. A two-electrode voltage clamp was used to characterize the receptor expressed in Xenopus laevis oocytes. AVT induced an inward current which was dose dependent over the range 16.7 fmol to 5 pmol; isotocin was without effect over the same dose range. The mammalian vasopressin V(1)-type receptor agonist ([Phe(2), Orn(8)] oxytocin)() induced an inward current but was less potent than AVT, whereas the mammalian vasopressin V(2)-type receptor agonist ([Deamino(1), Val(4), D-Arg(8)] AVP) was without effect. Injection of oocytes with heparin or BAPTA suppressed the response to AVT, indicating receptor linkage to the phospholipase C-phosphatidylinositol pathway. Northern analysis demonstrated the presence of this AVT receptor mRNA in the brain, kidney, and gill of flounder.
Copyright 2001 Academic Press.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Miscellaneous