Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Mar;76(5):1465-74.
doi: 10.1046/j.1471-4159.2001.00137.x.

Molecular cloning and functional characterization of a novel delayed rectifier potassium channel from channel catfish (Ictalurus punctatus): expression in taste buds

Affiliations
Comparative Study

Molecular cloning and functional characterization of a novel delayed rectifier potassium channel from channel catfish (Ictalurus punctatus): expression in taste buds

J Kang et al. J Neurochem. 2001 Mar.

Abstract

The gustatory system of channel catfish is widely studied for its sensitivity to amino acids. As a first step in identifying the molecular components that play a role in taste transduction in catfish, we cloned the full-length cDNA for Kv2-catfish, a novel K(+) channel that is expressed in taste buds. The deduced amino acid sequence is 816 residues, and shares a 56-59% sequence identity with Kv2.1 and Kv2.2, the other members of the vertebrate Kv2 subfamily of voltage-gated K(+) channels. The Kv2-catfish RNA was expressed in taste buds, brain, skeletal muscle, kidney, intestine and gills, and its gene is represented as a single copy in the catfish genome. Recombinant channels expressed in Xenopus oocytes were selective for K(+), and were inhibited by tetraethylammonium applied to the extracellular side of the membrane during two-electrode voltage clamp analysis with a 50% inhibitory constant of 6.1 mM. The channels showed voltage-dependent activation, and did not inactivate within 200 ms. Functionally, Kv2-catfish is a voltage-gated, delayed rectifier K(+) channel, and its primary structure is the most divergent sequence identified among the vertebrate members of the Kv2 subfamily of K(+) channels, being related equally well to Kv2.1 and Kv2.2.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources