Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 May 24;258(5):813-26.
doi: 10.1006/jmbi.1996.0289.

Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein

Affiliations

Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein

R Lück et al. J Mol Biol. .

Abstract

An algorithm for prediction of conserved secondary structure of single-stranded RNA is presented. For each RNA of a set of homologous RNAs optimal and suboptimal secondary structures are calculated and stored in a base-pair probability matrix. A multiple sequence alignment is performed for the set of RNAs. The resulting gaps are introduced into the individual probability matrices. These homologous probability matrices are summed to give a consensus probability matrix emphasizing the conserved secondary structure elements of the RNA set. Thus the algorithm combines the advantages of thermodynamic structure prediction by energy minimization with the information obtained from phylogenetic alignment of sequences. The algorithm is applied to three examples. The REV-responsive element of HIV, the structure of which is well known from the literature, was chosen to test the algorithm. The second example is the 3' terminal segment of genomic single-stranded RNAs of cucumber mosaic viruses; a structure similar to that of the related brome mosaic virus was expected and was confirmed. The third example is the prion-protein mRNA from different organisms; the structure of this mRNA is not known. By application of the algorithm highly conserved hairpins were found in the prion-protein mRNA.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources