A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance
- PMID: 11886869
- DOI: 10.1074/jbc.M201031200
A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance
Abstract
The cation diffusion facilitator (CDF) family represents a class of ubiquitous metal transporters. Inactivation of a CDF in Schizosaccharomyces pombe, Zhf, causes drastically different effects on the tolerance toward various metals. A deletion mutant is Zn(2+)/Co(2+)-hypersensitive yet displays significantly enhanced Cd(2+) and Ni(2+) tolerance. Accumulation of zinc, cobalt, and cadmium is reduced in mutant cells. Non-vacuolar zinc content, as measured by analytical electron microscopy, is lower in zhf(-) cells compared with wild-type cells in the presence of elevated Zn(2+) concentrations. The protective effect against cadmium toxicity is independent of the phytochelatin detoxification pathway. Phytochelatin synthase-deficient cells show extremely enhanced (about 200-fold) cadmium tolerance when zhf is disrupted. Immunogold labeling indicates endoplasmic reticulum (ER) localization of Zhf. Electron spectroscopic imaging shows that accumulation of zinc coincides with Zhf localization, demonstrating a major role of the ER for metal storage and the involvement of Zhf in cellular zinc homeostasis. Also, these observations indicate that Cd(2+) ions exert their toxic effects on cellular metabolism in the ER rather than in the cytosol.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases