Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 15;267(2):1265-70.

Proteoglycan-Lb, a small dermatan sulfate proteoglycan expressed in embryonic chick epiphyseal cartilage, is structurally related to osteoinductive factor

Affiliations
  • PMID: 1730648
Free article

Proteoglycan-Lb, a small dermatan sulfate proteoglycan expressed in embryonic chick epiphyseal cartilage, is structurally related to osteoinductive factor

T Shinomura et al. J Biol Chem. .
Free article

Abstract

We have isolated cDNA clones encoding the core protein of PG-Lb, proteoglycan which has been shown to be preferentially expressed in the zone of flattened chondrocytes of the developing chick limb cartilage (Shinomura, T., Kimata, K., Oike, Y., Yano, S., and Suzuki, S. (1984) Dev. Biol. 103, 211-220). The deduced amino acid sequence from the cDNA analysis indicates the presence of consensus leucine-rich repeats which are present in other small proteoglycans, decorin, biglycan, and fibromodulin. However, the homology analysis revealed that chick PG-Lb showed a higher homology (about 50% in the region containing leucine-rich repeats) to human osteoinductive factor, OIF, rather than to the other small proteoglycans. Furthermore, 6 cysteine residues are detected in both PG-Lb and OIF with invariant relative positions. Therefore, such an evolutionarily conserved structure in the PG-Lb core protein might be involved in some important biological functions of this molecule. In close relation to the structural similarity to OIF, the unique expression of PG-Lb in the ossifying area of cartilage suggested the possible participation of this proteoglycan in osteogenic processes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources