Eucaryotic diversity in a hypersaline microbial mat
- PMID: 17993566
- PMCID: PMC2223211
- DOI: 10.1128/AEM.01448-07
Eucaryotic diversity in a hypersaline microbial mat
Abstract
To determine the eucaryotic diversity of the hypersaline Guerrero Negro microbial mat, we amplified 18S rRNA genes from DNA extracted from this mat and constructed and analyzed clone libraries. The extent of eucaryotic diversity detected was remarkably low, only 15 species among 890 clones analyzed. Six eucaryotic kingdoms were represented, as well as a novel cluster of sequences. Nematode sequences dominated the clone libraries.
Figures
References
-
- Bebout, B. M., S. P. Carpenter, D. J. Des Marais, M. Discipulo, T. Embaye, F. Garcia-Pichel, T. M. Hoehler, M. Hogan, L. L. Jahnke, R. M. Keller, S. R. Miller, L. E. Prufert-Bebout, C. Raleigh, M. Rothrock, and K. Turk. 2002. Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating earth's present and past field environments. Astrobiology 2:383-402. - PubMed
-
- Burr, A. H., J. D. Wager, and P. Sidhu. 2000. Ocellar pigmentation and phototaxis in the nematode Mermis nigrescens: changes during development. J. Exp. Biol. 203:1341-1350. - PubMed
-
- Croll, N. A., A. A. Evans, and J. M. Smith. 1975. Comparative nematode photoreceptors. Comp. Biochem. Physiol. 51:139-143. - PubMed
-
- Reference deleted.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
