Correlation of antimicrobial resistance with beta-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City
- PMID: 18591275
- PMCID: PMC2533509
- DOI: 10.1128/AAC.01684-07
Correlation of antimicrobial resistance with beta-lactamases, the OmpA-like porin, and efflux pumps in clinical isolates of Acinetobacter baumannii endemic to New York City
Abstract
Acinetobacter baumannii strains resistant to all beta-lactams, aminoglycosides, and fluoroquinolones have emerged in many medical centers. Potential mechanisms contributing to antimicrobial resistance were investigated in 40 clinical isolates endemic to New York City. The isolates were examined for the presence of various beta-lactamases, aminoglycoside-modifying enzymes, and mutations in gyrA and parC. Expression of the genes encoding the beta-lactamase AmpC, the efflux systems AdeABC and AbeM, and the OmpA-like porin was also examined by real-time reverse transcription-PCR. No VIM, IMP, KPC, OXA-23-type, OXA-24-type, or OXA-58 beta-lactamases were detected, although several isolates had acquired bla(SHV-5). Most cephalosporin-resistant isolates had increased levels of expression of ampC and/or had acquired bla(SHV-5); however, isolates without these features still had reduced susceptibility to cefepime that was mediated by the AdeABC efflux system. Although most isolates with ISAba1 upstream of the bla(OXA-51)-like carbapenemase gene were resistant to meropenem, several remained susceptible to imipenem. The presence of aminoglycoside-modifying enzymes and gyrase mutations accounted for aminoglycoside and fluoroquinolone resistance, respectively. The increased expression of adeABC was not an important contributor to aminoglycoside or fluoroquinolone resistance but did correlate with reduced susceptibility to tigecycline. The expression of abeM and ompA and phenotypic changes in OmpA did not correlate with antimicrobial resistance. A. baumannii has become a well-equipped nosocomial pathogen; defining the relative contribution of these and other mechanisms of antimicrobial resistance will require further investigation.
References
-
- Bou, G., G. Cervero, M. A. Dominguez, C. Quereda, and J. Martinez-Beltran. 2000. Characterization of a nosocomial outbreak caused by multiresistant Acinetobacter buamannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A. baumannii is not due solely to the presence of β-lactamases. J. Clin. Microbiol. 38:3299-3305. - PMC - PubMed
-
- Bradford, P. A., S. Bratu, C. Urban, M. Visalli, N. Mariano, D. Landman, J. J. Rahal, S. Brooks, S. Cebular, and J. Quale. 2004. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 β-lactamases in New York City. Clin. Infect. Dis. 39:55-60. - PubMed
-
- Bratu, S., D. Landman, J. Gupta, and J. Quale. 2007. Role of AmpD, OprF, and penicillin-binding proteins in β-lactam resistance in clinical isolates of Pseudomonas aeruginosa. J. Med. Microbiol. 56:809-814. - PubMed
-
- Brown, S., H. K. Young, and S. G. B. Amyes. 2005. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin. Microbiol. Infect. 11:15-23. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous