Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Nov;575(7783):459-463.
doi: 10.1038/s41586-019-1754-6. Epub 2019 Nov 20.

Observation of inverse Compton emission from a long γ-ray burst

MAGIC CollaborationP Veres  1 P N Bhat  1   2 M S Briggs  1   2 W H Cleveland  3 R Hamburg  1   2 C M Hui  4 B Mailyan  1 R D Preece  1   2 O J Roberts  3 A von Kienlin  5 C A Wilson-Hodge  4 D Kocevski  4 M Arimoto  6 D Tak  7   8 K Asano  9 M Axelsson  10   11 G Barbiellini  12 E Bissaldi  13   14 F Fana Dirirsa  15 R Gill  16 J Granot  16 J McEnery  7   8 N Omodei  17   18 S Razzaque  15 F Piron  19 J L Racusin  8 D J Thompson  8 S Campana  20 M G Bernardini  20 N P M Kuin  21 M H Siegel  22 S B Cenko  8   23 P O'Brien  24 M Capalbi  25 A Daì  25 M De Pasquale  26 J Gropp  22 N Klingler  22 J P Osborne  24 M Perri  27   28 R L C Starling  24 G Tagliaferri  20   25 A Tohuvavohu  22 A Ursi  29 M Tavani  29   30   31 M Cardillo  29 C Casentini  29 G Piano  29 Y Evangelista  29 F Verrecchia  27   28 C Pittori  27   28 F Lucarelli  27   28 A Bulgarelli  28 N Parmiggiani  28 G E Anderson  32 J P Anderson  33 G Bernardi  34   35   36 J Bolmer  5 M D Caballero-García  37 I M Carrasco  38 A Castellón  39 N Castro Segura  40 A J Castro-Tirado  41   42 S V Cherukuri  43 A M Cockeram  44 P D'Avanzo  20 A Di Dato  45   46 R Diretse  47 R P Fender  48 E Fernández-García  42 J P U Fynbo  49   50 A S Fruchter  51 J Greiner  5 M Gromadzki  52 K E Heintz  53 I Heywood  35   48 A J van der Horst  54   55 Y-D Hu  42   56 C Inserra  57 L Izzo  42   58 V Jaiswal  43 P Jakobsson  53 J Japelj  59 E Kankare  60 D A Kann  42 C Kouveliotou  54   55 S Klose  61 A J Levan  62 X Y Li  63   64 S Lotti  29 K Maguire  65 D B Malesani  49   50   58   66 I Manulis  67 M Marongiu  68   69 S Martin  33   70 A Melandri  20 M J Michałowski  71 J C A Miller-Jones  32 K Misra  72   73 A Moin  74 K P Mooley  75   76 S Nasri  74 M Nicholl  77   78 A Noschese  45 G Novara  79   80 S B Pandey  72 E Peretti  68   81 C J Pérez Del Pulgar  41 M A Pérez-Torres  42   82 D A Perley  44 L Piro  29 F Ragosta  46   83   84 L Resmi  43 R Ricci  34 A Rossi  85 R Sánchez-Ramírez  29 J Selsing  50 S Schulze  86 S J Smartt  87 I A Smith  88 V V Sokolov  89 J Stevens  90 N R Tanvir  24 C C Thöne  42 A Tiengo  79   80   91 E Tremou  92 E Troja  8   93 A de Ugarte Postigo  42   58 A F Valeev  89 S D Vergani  94 M Wieringa  95 P A Woudt  47 D Xu  96 O Yaron  67 D R Young  87
Collaborators, Affiliations
Free article

Observation of inverse Compton emission from a long γ-ray burst

MAGIC Collaboration et al. Nature. 2019 Nov.
Free article

Abstract

Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.

PubMed Disclaimer

Comment in

References

    1. Mészáros, P. Theories of gamma-ray bursts. Annu. Rev. Astron. Astrophys. 40, 137–169 (2002).
    1. Piran, T. The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2005).
    1. van Paradijs, J., Kouveliotou, C. & Wijers, R. A. M. J. Gamma-ray burst afterglows. Annu. Rev. Astron. Astrophys. 38, 379–425 (2000).
    1. Gehrels, N., Ramirez-Ruiz, E. & Fox, D. B. Gamma-ray bursts in the Swift era. Annu. Rev. Astron. Astrophys. 47, 567–617 (2009).
    1. Gehrels, N. & Mészáros, P. Gamma-ray bursts. Science 337, 932–936 (2012). - PubMed - PMC

Publication types