Molecular and structural characterisation of a macrophage migration inhibitory factor from sea bass (Dicentrarchus labrax L.)
- PMID: 20363032
- DOI: 10.1016/j.vetimm.2010.03.007
Molecular and structural characterisation of a macrophage migration inhibitory factor from sea bass (Dicentrarchus labrax L.)
Abstract
The macrophage migration inhibitory factor (MIF) is a cytokine produced in numerous cell types, mainly T lymphocytes and macrophages, in response to inflammatory stimuli. In this paper we report the identification of a cDNA encoding a MIF molecule from sea bass (Dicentrarchus labrax L.), its expression analysis and its 3D structure obtained by template-based modelling. The sea bass MIF cDNA consists of 609bp that translates in one reading frame to give the entire molecule containing 115 amino acids. The sequence contains three cysteine residues in conserved positions compared to human MIF and most Teleost fishes, with the exception of zebrafish and carp. The Cys(57)-Ala(58)-Leu(59)-Cys(60) motif, present inside the stretch important for JAB1-interaction and mediator of the thiol-protein oxidoreductase activity of MIF, is conserved in sea bass, together with the Pro(2) residue that is crucial for the tautomerase catalytic activity. Real-time PCR analyses revealed that MIF is constitutively expressed in all selected tissues and organs, with the highest mRNA level observed in thymus. MIF expression was induced after 4h in vitro stimulation of head kidney leukocytes with LPS and decreased after 24h. The predicted 3D model of sea bass MIF has been used to verify the presence of structural requirements for its known biological activities.
Copyright 2010 Elsevier B.V. All rights reserved.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Molecular Biology Databases