Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract
- PMID: 21075881
- PMCID: PMC3019714
- DOI: 10.1128/AEM.02006-10
Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract
Abstract
Lactobacilli are naturally found in the gastrointestinal tract of chickens, and there is interest in utilizing autochthonous strains for the delivery of therapeutic proteins. Previously we identified three chicken-derived Lactobacillus strains, Lactobacillus agilis La3, Lactobacillus vaginalis Lv5, and Lactobacillus crispatus Lc9, which persist in the gastrointestinal tract of chickens fed either a commercial or high-protein diet. In the current study, we investigated the ability to electrotransform these strains, determined plasmid vector stability, and compared reporter gene expression directed by several different promoters. The La3 and Lv5 strains were reproducibly transformed with efficiencies of 10(8) and 10(6) transformants per microgram of plasmid DNA, respectively. The third strain tested, L. crispatus Lc9, was recalcitrant to all transformation protocols examined. The plasmid vectors pTRK563 and pTRKH2 were maintained over 100 generations in La3 and Lv5, respectively. The ability of La3 and Lv5 to express the heterologous reporter gene gfp was analyzed using heterologous and homologous promoters. Transformants of both La3 and Lv5 containing the La3 ldhL promoter were the most fluorescent. To our knowledge, this is the first report of successful transformation and heterologous protein expression in L. agilis and L. vaginalis. The ability of these strains to express heterologous proteins in vitro indicates their potential utility as in vivo delivery vectors for therapeutic peptides to the chicken gastrointestinal tract.
Figures
References
-
- Ahrne, S., G. Molin, and L. Axelsson. 1992. Transformation of Lactobacillus reuteri with electroporation: studies on the erythromycin resistance plasmid pLUL631. Curr. Microbiol. 24:199-205.
-
- Altermann, E., W. M. Russell, M. A. Azcarate-Peril, R. Barrangou, B. L. Buck, O. McAuliffe, N. Souther, A. Dobson, T. Duong, M. Callanan, S. Lick, A. Hamrick, R. Cano, and T. R. Klaenhammer. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. U. S. A. 102:3906-3912. - PMC - PubMed
-
- Aukrust, T. W., M. B. Brurberg, and I. F. Nes. 1995. Transformation of Lactobacillus by electroporation. Methods Mol. Biol. 47:201-208. - PubMed
-
- Beasley, S. S., T. M. Takala, J. Reunanen, J. Apajalahti, and P. E. Saris. 2004. Characterization and electrotransformation of Lactobacillus crispatus isolated from chicken crop and intestine. Poult. Sci. 83:45-48. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
