Multilocus sequence analysis provides basis for fast and reliable identification of Vibrio harveyi-related species and reveals previous misidentification of important marine pathogens
- PMID: 22055753
- DOI: 10.1016/j.syapm.2011.09.001
Multilocus sequence analysis provides basis for fast and reliable identification of Vibrio harveyi-related species and reveals previous misidentification of important marine pathogens
Abstract
Vibrio harveyi and related bacteria are important pathogens responsible for severe economic losses in the aquaculture industry worldwide. Phenotypic tests and 16S rRNA gene analysis fail to discriminate species within the V. harveyi group because these are phenotypically and genetically nearly identical. This study used multilocus sequence analysis to identify 36 V. harveyi-like isolates obtained from a wide range of sources in Australia and to re-evaluate the identity of important pathogens. Phylogenies inferred from the 16S rRNA gene and five concatenated protein-coding genes (rpoA-pyrH-topA-ftsZ-mreB) revealed four well-supported clusters identified as V. harveyi, V. campbellii, V. rotiferianus and V. owensii. Results revealed that important V. campbellii and V. owensii prawn pathogens were previously misidentified as V. harveyi and also that the recently described V. communis sp. nov. is likely a junior synonym of V. owensii. Although the MLSA topologies corroborated the 16S rRNA gene phylogeny, the latter was less informative than each of the protein-coding genes taken singularly or the concatenated dataset. A two-locus phylogeny based on topA-mreB concatenated sequences was consistent with the five-locus MLSA phylogeny. Global Bayesian phylogenies inferred from topA-mreB suggested that this gene combination provides a practical yet still accurate approach for routine identification of V. harveyi-related species.
Copyright © 2011 Elsevier GmbH. All rights reserved.
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
