Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May 23;8(5):e63460.
doi: 10.1371/journal.pone.0063460. Print 2013.

Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell

Affiliations

Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell

Ariadna Vilar-Sanz et al. PLoS One. .

Abstract

The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A · m(-3) NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A · m(-3) NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Abundances of the 16S rRNA and functional genes for the three periods studied.
Mean values of the number of copies of the bacterial 16S rRNA (A) and the functional genes, narG and napA (B), nirS, nirK and nosZ (C) were represented according to the feeding periods in the cathode of a MFC. Standard errors of the mean are indicated. Different letters above the bars indicate significant differences (p<0.05) between periods.
Figure 2
Figure 2. Composition of denitrifier communities.
Pie charts comparing the community composition of denitrifiers according to functional gene similarities. Five denitrification genes, narG, napA, nirS, nirK and nosZ, at three different feeding periods in the cathode of a MFC are indicated. To facilitate the comparison between OTU distributions of bacterial communities, colors have been used as an indication of bacterial families and orders. Assignations have been made according to sequence similarities and may not reflect the exact phylogeny of the bacteria present.

References

    1. Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, et al. (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27: 481–492. - PubMed
    1. Puig S, Coma M, Monclús H, van Loosdrecht MCM, Colprim J, et al. (2008) Selection between alcohols and volatile fatty acids as external carbon sources for EBPR. Water Res 42: 557–566. - PubMed
    1. Clauwaert P, Rabaey K, Aelterman P, de Schamphelaire L, Pham TH, et al. (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41: 3354–3360. - PubMed
    1. Puig S, Serra M, Vilar-Sanz A, Cabré M, Bañeras L, et al. (2011) Autotrophic nitrite removal in the cathode of microbial fuel cells. Bioresour Technol 102: 4462–4467. - PubMed
    1. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42: 3013–3024. - PubMed

Publication types

Associated data

LinkOut - more resources