Identification, typing, and phylogenetic relationships of the main clinical Nocardia species in spain according to their gyrB and rpoB genes
- PMID: 23966490
- PMCID: PMC3889740
- DOI: 10.1128/JCM.00515-13
Identification, typing, and phylogenetic relationships of the main clinical Nocardia species in spain according to their gyrB and rpoB genes
Abstract
This study compares the identification, typing, and phylogenetic relationships of the most prevalent clinical Nocardia species in Spain, as determined via sequence analysis of their housekeeping genes gyrB and rpoB, with the results returned by the gold standard 16S rRNA method. gyrB and rpoB analyses identified Nocardia abscessus, N. cyriacigeorgica, N. farcinica, and the N. nova complex, species that together account for more than half of the human nocardiosis cases recorded in Spain. The individual discriminatory power of gyrB and rpoB with respect to intraspecies typing, calculated using the Hunter-Gaston discriminatory index (HGDI), was generally high (HGDI, 0.85 to 1), except for rpoB with respect to N. farcinica (HGDI, 0.71). Phylogenetically, different degrees of intra- and interspecies microheterogeneity were observed for gyrB and rpoB in a group of 119 clinical strains. A single 16S haplotype was obtained for each species, except for the N. nova complex (8 types), while gyrB and rpoB were more polymorphic: N. abscessus had 14 and 18 haplotypes, N. cyriacigeorgica had 17 and 12, N. farcinica had 11 and 5, and the N. nova complex had 26 and 29 haplotypes, respectively. A diversity gradient was therefore seen, with N. farcinica at the bottom followed by N. abscessus and N. cyriacigeorgica in the middle and N. nova complex at the top. The complexity of the N. nova complex is highlighted by its six variations in the GyrB (126)AAAPEH motif. gyrB sequencing (with or without rpoB sequencing) offers a simple means for identifying the most prevalent Nocardia species in Spanish medical laboratories and for determining the intraspecific diversity among their strains.
References
-
- Jannat-Khah D, Kroppenstedt RM, Klenk HP, Spröer C, Schumann P, Lasker BA, Steigerwalt AG, Hinrikson HP, Brown JM. 2010. Nocardia mikamii sp. nov., isolated from human pulmonary infections in the USA. Int. J. Syst. Evol. Microbiol. 60:2272–2276 - PubMed
-
- Moser BD, Klenk HP, Schumann P, Pötter G, Lasker BA, Steigerwalt AG, Hinrikson HP, Brown JM. 2011. Nocardia niwae sp. nov., isolated from human pulmonary sources. Int. J. Syst. Evol. Microbiol. 61:438–442 - PubMed
-
- Woo PC, Lau SK, Teng JL, Tse H, Yuen KY. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14:908–934 - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases